Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
Fiorenzano, A., Sozzi, E., Birtele, M., Kajtez, J., Giacomoni, J., Nilsson, F., Bruzelius, A., Sharma, Y., Zhang, Y., Matsson, B., Emnéus, J., Rylander, D., Storm, P., Parmar, M.
(2021) Nature Communications, 12, 7302
https://doi.org/10.1038/s41467-021-27464-5
Cyclic Expansion/Compression of the Air–Liquid Interface as a Simple Method to Produce Silk Fibers
Kvick, M., Tasiopoulos, C. P., Barth, A., Söderberg, L. D., Lundell, F., Hedhammar, M.
(2020) Macromolecular Bioscience, 2000227
https://doi.org/10.1002/mabi.202000227
Recombinant Spider Silk Forms Tough and Elastic Nanomembranes that are Protein‐Permeable and Support Cell Attachment and Growth
Gustafsson, L., Tasiopoulos, C. P., Jansson, R., Kvick, M., Duursma, T., Gasser, T. C., van der Wijngaart, W., Hedhammar, M
(2020) Advanced Functional Materials, 2002982
https://doi.org/10.1002/adfm.202002982
Assembly of FN-silk with laminin-521 to integrate hPSCs into a three-dimensional culture for neural differentiation
Åstrand, C., Chotteau, V., Falke, A., Hedhammar, M.
(2020) Biomaterials Science
https://doi.org/10.1039/C9BM01624D
VEGFR2-Specific Ligands Based on Affibody Molecules Demonstrate Agonistic Effects when Tetrameric in the Soluble Form or Immobilized via Spider Silk
Güler, R., Thatikonda, N., Ghani, H. A., Hedhammar, M., Löfblom, J.
(2019) ACS Biomaterials Science & Engineering, 5, 6474-6484
https://doi.org/10.1021/acsbiomaterials.9b00994
Bioactive Silk Coatings Reduce the Adhesion of Staphylococcus aureus while Supporting Growth of Osteoblast-like Cells.
Nilebäck, L., Widhe, M., Seijsing, J., Bysell, H., Sharma, P. K., Hedhammar, M.
(2019) ACS Applied Materials & Interfaces, 11 (28):24999-25007
https://doi.org/10.1021/acsami.9b05531
Structure of the N-terminal domain of Euprosthenops australis dragline silk suggests that conversion of spidroin dope to spider silk involves a conserved asymmetric dimer intermediate.
Jiang, W., Askarieh, G., Shkumatov, A., Hedhammar, M., Knight, S. D.
(2019) Acta Crystallographica, 75 (Pt 7): 618-627
https://doi.org/10.1107/S2059798319007253
Assembly of functionalized silk together with cells to obtain proliferative 3D cultures integrated in a network of ECM-like microfibers
Johansson, U., Widhe, M., Shalaly, N. D., Arregui, I. L., Nilebäck, L., Tasiopoulos, C. P., Åstrand, C., Berggren, P.-O., Gasser, C., Hedhammar, M.
(2019) Scientific Reports, 9:6291
https://www.nature.com/articles/s41598-019-42541-y
Interfacial behavior of recombinant spider silk protein parts reveals cues on the silk assembly mechanism
Nilebäck, L., Arola, S., Kvick, M., Paananen, A., Linder, M. B., Hedhammar, M.
(2018) Langmuir, 34 (39), pp 11795–11805
https://pubs.acs.org/doi/10.1021/acs.langmuir.8b02381
Genetically Engineered Mucoadhesive Spider Silk
Petrou, G., Jansson, R., Högqvist, M., Erlandsson, J., Wågberg, L., Hedhammar, M., Crouzier, T.
(2018) Biomacromolecules, 19(8), pp 3268–3279
https://pubs.acs.org/doi/10.1021/acs.biomac.8b00578
Bioactivation of Spider Silk with Basic Fibroblast Growth Factor for in Vitro Cell Culture: A Step toward Creation of Artificial ECM
Thatikonda, N., Nilebäck, L., Kempe, A., Widhe, M., Hedhammar, M.
(2018) ACS Biomaterials Science and Engineering, 4 (9), pp 3384–3396
https://cdn-pubs.acs.org/doi/10.1021/acsbiomaterials.8b00844
Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts
Chouhan, D., Thatikonda, N., Nilebäck, L., Widhe, M., Hedhammar, M., Mandal, B. B.
(2018) ACS Applied Materials & Interfaces, 10 (28), pp 23560–23572
https://pubs.acs.org/doi/10.1021/acsami.8b05853#cor1
A spidroin-derived solubility tag enables controlled aggregation of a designed amyloid protein
Sarr, M., Kronqvist, N., Chen, G., Aleksis, R., Purhonen, P., Hebert, H., Jaudzems, K., Rising, A., Johansson, J.
(2018) FEBS Journal, 285, pp 1873-1885
https://febs.onlinelibrary.wiley.com/doi/abs/10.1111/febs.14451
Recombinant Spider Silk as Mediator for One‐Step, Chemical‐Free Surface Biofunctionalization
Horak, J., Jansson, R., Dev, A., Nilebäck, L., Behnam, K., Linnros, J., Hedhammar, M., Karlström, A. E.
(2018) Advanced Functional Materials, 1800206,
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201800206
Recombinant spider silk functionalized with a motif from fibronectin mediates cell adhesion and growth on polymeric substrates by entrapping cells during self-assembly
Tasiopoulos, C. P., Widhe, M., Hedhammar, M.
(2018) ACS Applied Materials & Interfaces, 10 (17), pp 14531–14539
https://pubs.acs.org/doi/10.1021/acsami.8b02647
Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces
Gustafsson, L., Jansson, R., Hedhammar, M., van der Wijngaart, W.
(2017) Advanced Materials, 1704325
http://onlinelibrary.wiley.com/doi/10.1002/adma.201704325/full
Silk-silk interactions between silkworm fibroin and recombinant spider silk fusion proteins enable construction of bioactive materials
Nilebäck, L., Chouhan, D., Jansson, R., Widhe, M., Mandal, B., Hedhammar, M.
(2017) ACS Applied Materials & Interfaces, 9 (37), pp 31634–31644
http://pubs.acs.org/doi/abs/10.1021/acsami.7b10874
Efficient protein production inspired by how spiders make silk
Kronqvist, N., Sarr, M., Lindqvist, A., Nordling, K., Otikovs, M., Venturi, L., Pioselli, B., Purhonen, P., Landreh, M., Biverstål, H., Toleikis, Z., Sjöberg, L., Robinson, C.V., Pelizzi, N., Jörnvall, H., Hebert, H., Jaudzems, K., Curstedt, T., Rising, A., Johansson, J.
(2017) Nature communications 8:15504
https://www.nature.com/articles/ncomms15504
Ultrastrong and Bioactive Nanostructured Bio-Based Composites
Mittal, N., Jansson, R., Widhe, M., Benselfelt, T., Håkansson, K.M.O., Lundell, F., Hedhammar, M., Söderberg, L.D.
(2017) ACS Nano, 11 (5), pp 5148–5159
http://pubs.acs.org/doi/abs/10.1021/acsnano.7b02305
Self-assembly of recombinant silk as a strategy for chemical-free formation of bioactive coatings: a real-time study
Nilebäck, L., Hedin, J., Widhe, M., Floderus, L., Krona, A., Bysell, H., Hedhammar, M.
(2017) BioMacromolecules, 18(3), pp. 846-854
https://doi.org/10.1021/acs.biomac.6b01721
A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices
Widhe, M., Shalaly, N.D., Hedhammar, M.
(2016) Biomaterials, 74, pp. 256-266
https://doi.org/10.1016/j.biomaterials.2015.10.013
Genetic fusion of single-chain variable fragments to partial spider silk improves target detection in micro- and nanoarrays
Thatikonda, N., Delfani, P., Jansson, R., Petersson, L., Lindberg, D., Wingren, C., Hedhammar, M.
(2016) Biotechnology Journal, 11 (3), pp. 437-448
https://doi.org/10.1002/biot.201500297
Silk matrices promote formation of insulin-secreting islet-like clusters
Shalaly, N.D., Ria, M., Johansson, U., Åvall, K., Berggren, P.-O., Hedhammar, M.
(2016) Biomaterials, 90, pp. 50-61
https://doi.org/10.1016/j.biomaterials.2016.03.006
Efficient passage of human pluripotent stem cells on spider silk matrices under xeno-free conditions
Wu, S., Johansson, J., Hovatta, O., Rising, A.
(2016) Cellular and Molecular Life Sciences, 73 (7), pp. 1479-1488
https://doi.org/10.1007/s00018-015-2053-5
Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris
Jansson, R., Lau, C.H., Ishida, T., Ramström, M., Sandgren, M., Hedhammar, M.
(2016) Biotechnology Journal, 11 (5), pp. 687-699
https://doi.org/10.1002/biot.201500412
Rational Design of Spider Silk Materials Genetically Fused with an Enzyme
Jansson, R., Courtin, C.M., Sandgren, M., Hedhammar, M.
(2015) Advanced Functional Materials, 25 (33), pp. 5343-5352
https://doi.org/10.1002/adfm.201501833
Pancreatic islet survival and engraftment is promoted by culture on functionalized spider silk matrices
Johansson, U., Ria, M., Åvall, K., Shalaly, N.D., Zaitsev, S.V., Berggren, P.-O., Hedhammar, M.
(2015) PLoS ONE, 10 (6)
https://doi.org/10.1371/journal.pone.0130169
Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells
Wu, S., Johansson, J., Damdimopoulou, P., Shahsavani, M., Falk, A., Hovatta, O., Rising, A.
(2014)Biomaterials, 35 (30), pp. 8496-8502
https://doi.org/10.1016/j.biomaterials.2014.06.039
Recombinant spider silk genetically functionalized with affinity domains
Jansson, R., Thatikonda, N., Lindberg, D., Rising, A., Johansson, J., Nygren, P.-A., Hedhammar, M.
(2014) Biomacromolecules, 15 (5), pp. 1696-1706
https://doi.org/10.1021/bm500114e
Recombinant spider silk with cell binding motifs for specific adherence of cells
Widhe, M., Johansson, U., Hillerdahl, C.-O., Hedhammar, M.
(2013) Biomaterials, 34 (33), pp. 8223-8234
https://doi.org/10.1016/j.biomaterials.2013.07.058
Recombinant spider silk matrices for neural stem cell cultures
Lewicka, M., Hermanson, O., Rising, A.U.
(2012) Biomaterials, 33 (31), pp. 7712-7717
https://doi.org/10.1016/j.biomaterials.2012.07.021
pH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain
Jaudzems, K., Askarieh, G., Landreh, M., Nordling, K., Hedhammar, M., Jörnvall, H., Rising, A., Knight, S.D., Johansson, J.
(2012) Journal of Molecular Biology, 422 (4), pp. 477-487
https://doi.org/10.1016/j.jmb.2012.06.004
Current progress and limitations of spider silk for biomedical applications
Widhe, M., Johansson, J., Hedhammar, M., Rising, A
(2012) Biopolymers, 97 (6), pp. 468-478
https://doi.org/10.1002/bip.21715
Functionalisation of recombinant spider silk with conjugated polyelectrolytes
Müller, C., Jansson, R., Elfwing, A., Askarieh, G., Karlsson, R., Hamedi, M., Rising, A., Johansson, J., Inganäs, O., Hedhammar, M.
(2011) Journal of Materials Chemistry, 21 (9), pp. 2909-2915
https://doi.org/10.1039/c0jm03270k
Spider silk proteins: Recent advances in recombinant production, structure-function relationships and biomedical applications
Rising, A., Widhe, M., Johansson, J., Hedhammar, M.
(2011) Cellular and Molecular Life Sciences, 68 (2), pp. 169-184
https://doi.org/10.1007/s00018-010-0462-z
A pH-Dependent Dimer Lock in Spider Silk Protein
Landreh, M., Askarieh, G., Nordling, K., Hedhammar, M., Rising, A., Casals, C., Astorga-Wells, J., Alvelius, G., Knight, S.D., Johansson, J., Jörnvall, H., Bergman, T.
(2010) Journal of Molecular Biology, 404 (2), pp. 328-336
https://doi.org/10.1016/j.jmb.2010.09.054
Sterilized recombinant spider silk fibers of low pyrogenicity
Hedhammar, M.Y., Bramfeldt, H., Baris, T., Widhe, M., Askarieh, G., Nordling, K., Aulock, S.V., Johansson, J.
(2010) Biomacromolecules, 11 (4), pp. 953-959
https://doi.org/10.1021/bm9014039
Self-assembly of spider silk proteins is controlled by a pH-sensitive relay
Askarieh, G., Hedhammar, M., Nordling, K., Saenz, A., Casals, C., Rising, A., Johansson, J., Knight, S.D.
(2010) Nature, 465 (7295), pp. 236-238
https://doi.org/10.1038/nature08962
Recombinant spider silk as matrices for cell culture
Widhe, M., Bysell, H., Nystedt, S., Schenning, I., Malmsten, M., Johansson, J., Rising, A., Hedhammar, M.
(2010) Biomaterials, 31 (36), pp. 9575-9585
https://doi.org/10.1016/j.biomaterials.2010.08.061
Engineered disulfides improve mechanical properties of recombinant spider silk
Grip, S., Johansson, J., Hedhammar, M.
(2009) Protein science, 18 (5), pp. 1012-1022
https://doi.org/10.1002/pro.111
Tissue response to subcutaneously implanted recombinant spider silk: An in vivo study
Fredriksson, C., Hedhammar, M., Feinstein, R., Nordling, K., Kratz, G., Johansson, J., Huss, F., Rising, A.
(2009) Materials, 2 (4), pp. 1908-1922
https://doi.org/10.3390/ma2041908
Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: Implications for fiber formation
Hedhammar, M., Rising, A., Grip, S., Martinez, A.S., Nordling, K., Casals, C., Stark, M., Johansson, J.
(2008) Biochemistry, 47 (11), pp. 3407-3417
https://doi.org/10.1021/bi702432y
Major ampullate spidroins from Euprosthenops australis: Multiplicity at protein, mRNA and gene levels
Rising, A., Johansson, J., Larson, G., Bongcam-Rudloff, E., Engström, W., Hjälm, G.
(2007) Insect Molecular Biology, 16 (5), pp. 551-561
https://doi.org/10.1111/j.1365-2583.2007.00749.x
Macroscopic fibers self-assembled from recombinant miniature spider silk proteins
Stark, M., Grip, S., Rising, A., Hedhammar, M., Engström, W., Hjälm, G., Johansson, J.
(2007) Biomacromolecules, 8 (5), pp. 1695-1701
https://doi.org/10.1021/bm070049y
N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins
Rising, A., Hjälm, G., Engström, W., Johansson, J.
(2006) Biomacromolecules, 7 (11), pp. 3120-3124
https://doi.org/10.1021/bm060693x