• Technologies
    • Spiber biomaterial
      • BioSilk for 3D cell culture
      • Fibrillar coating of functionalized silk
    • Spiber SolvNT®
  • Publications
  • News & Events
  • Technologies
    • Spiber biomaterial
      • BioSilk for 3D cell culture
      • Fibrillar coating of functionalized silk
    • Spiber SolvNT®
  • Publications
  • News & Events

Spiber® Technologies

Spiber® Technologies

  • Technologies
    • Spiber biomaterial
      • BioSilk for 3D cell culture
      • Fibrillar coating of functionalized silk
    • Spiber SolvNT®
  • Publications
  • News & Events

Publications

Cyclic Expansion/Compression of the Air–Liquid Interface as a Simple Method to Produce Silk Fibers

Kvick, M., Tasiopoulos, C. P., Barth, A., Söderberg, L. D., Lundell, F., Hedhammar, M.
(2020) Macromolecular Bioscience, 2000227
https://doi.org/10.1002/mabi.202000227

Recombinant Spider Silk Forms Tough and Elastic Nanomembranes that are Protein‐Permeable and Support Cell Attachment and Growth

Gustafsson, L., Tasiopoulos, C. P., Jansson, R., Kvick, M., Duursma, T., Gasser, T. C., van der Wijngaart, W., Hedhammar, M
(2020) Advanced Functional Materials, 2002982
https://doi.org/10.1002/adfm.202002982

Assembly of FN-silk with laminin-521 to integrate hPSCs into a three-dimensional culture for neural differentiation

Åstrand, C., Chotteau, V., Falke, A., Hedhammar, M.
(2020) Biomaterials Science
https://doi.org/10.1039/C9BM01624D

VEGFR2-Specific Ligands Based on Affibody Molecules Demonstrate Agonistic Effects when Tetrameric in the Soluble Form or Immobilized via Spider Silk

Güler, R., Thatikonda, N., Ghani, H. A., Hedhammar, M., Löfblom, J.
(2019) ACS Biomaterials Science & Engineering, 5, 6474-6484
https://doi.org/10.1021/acsbiomaterials.9b00994

Bioactive Silk Coatings Reduce the Adhesion of Staphylococcus aureus while Supporting Growth of Osteoblast-like Cells.

Nilebäck, L., Widhe, M., Seijsing, J., Bysell, H., Sharma, P. K., Hedhammar, M.
(2019) ACS Applied Materials & Interfaces, 11 (28):24999-25007
https://doi.org/10.1021/acsami.9b05531

Structure of the N-terminal domain of Euprosthenops australis dragline silk suggests that conversion of spidroin dope to spider silk involves a conserved asymmetric dimer intermediate.

Jiang, W., Askarieh, G., Shkumatov, A., Hedhammar, M., Knight, S. D.
(2019) Acta Crystallographica, 75 (Pt 7): 618-627
https://doi.org/10.1107/S2059798319007253

Assembly of functionalized silk together with cells to obtain proliferative 3D cultures integrated in a network of ECM-like microfibers

Johansson, U., Widhe, M., Shalaly, N. D., Arregui, I. L., Nilebäck, L., Tasiopoulos, C. P., Åstrand, C., Berggren, P.-O., Gasser, C., Hedhammar, M.
(2019) Scientific Reports, 9:6291
https://www.nature.com/articles/s41598-019-42541-y

Interfacial behavior of recombinant spider silk protein parts reveals cues on the silk assembly mechanism

Nilebäck, L., Arola, S., Kvick, M., Paananen, A., Linder, M. B., Hedhammar, M.
(2018) Langmuir, 34 (39), pp 11795–11805
https://pubs.acs.org/doi/10.1021/acs.langmuir.8b02381

Genetically Engineered Mucoadhesive Spider Silk

Petrou, G., Jansson, R., Högqvist, M., Erlandsson, J., Wågberg, L., Hedhammar, M., Crouzier, T.
(2018) Biomacromolecules, 19(8), pp 3268–3279
https://pubs.acs.org/doi/10.1021/acs.biomac.8b00578

Bioactivation of Spider Silk with Basic Fibroblast Growth Factor for in Vitro Cell Culture: A Step toward Creation of Artificial ECM

Thatikonda, N., Nilebäck, L., Kempe, A., Widhe, M., Hedhammar, M.
(2018) ACS Biomaterials Science and Engineering, 4 (9), pp 3384–3396
https://cdn-pubs.acs.org/doi/10.1021/acsbiomaterials.8b00844

Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts

Chouhan, D., Thatikonda, N., Nilebäck, L., Widhe, M., Hedhammar, M., Mandal, B. B.
(2018) ACS Applied Materials & Interfaces, 10 (28), pp 23560–23572
https://pubs.acs.org/doi/10.1021/acsami.8b05853#cor1

A spidroin-derived solubility tag enables controlled aggregation of a designed amyloid protein

Sarr, M., Kronqvist, N., Chen, G., Aleksis, R., Purhonen, P., Hebert, H., Jaudzems, K., Rising, A., Johansson, J.
(2018) FEBS Journal, 285, pp 1873-1885
https://febs.onlinelibrary.wiley.com/doi/abs/10.1111/febs.14451

Recombinant Spider Silk as Mediator for One‐Step, Chemical‐Free Surface Biofunctionalization

Horak, J., Jansson, R., Dev, A., Nilebäck, L., Behnam, K., Linnros, J., Hedhammar, M., Karlström, A. E.
(2018) Advanced Functional Materials, 1800206,
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201800206

Recombinant spider silk functionalized with a motif from fibronectin mediates cell adhesion and growth on polymeric substrates by entrapping cells during self-assembly

Tasiopoulos, C. P., Widhe, M., Hedhammar, M.
(2018) ACS Applied Materials & Interfaces, 10 (17), pp 14531–14539
https://pubs.acs.org/doi/10.1021/acsami.8b02647

Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces

Gustafsson, L., Jansson, R., Hedhammar, M., van der Wijngaart, W.
(2017) Advanced Materials, 1704325
http://onlinelibrary.wiley.com/doi/10.1002/adma.201704325/full

Silk-silk interactions between silkworm fibroin and recombinant spider silk fusion proteins enable construction of bioactive materials

Nilebäck, L., Chouhan, D., Jansson, R., Widhe, M., Mandal, B., Hedhammar, M.
(2017) ACS Applied Materials & Interfaces, 9 (37), pp 31634–31644
http://pubs.acs.org/doi/abs/10.1021/acsami.7b10874

Efficient protein production inspired by how spiders make silk

Kronqvist, N., Sarr, M., Lindqvist, A., Nordling, K., Otikovs, M., Venturi, L., Pioselli, B., Purhonen, P., Landreh, M., Biverstål, H., Toleikis, Z., Sjöberg, L., Robinson, C.V., Pelizzi, N., Jörnvall, H., Hebert, H., Jaudzems, K., Curstedt, T., Rising, A., Johansson, J.
(2017) Nature communications 8:15504
https://www.nature.com/articles/ncomms15504

Ultrastrong and Bioactive Nanostructured Bio-Based Composites

Mittal, N., Jansson, R., Widhe, M., Benselfelt, T., Håkansson, K.M.O., Lundell, F., Hedhammar, M., Söderberg, L.D.
(2017) ACS Nano, 11 (5), pp 5148–5159
http://pubs.acs.org/doi/abs/10.1021/acsnano.7b02305

Self-assembly of recombinant silk as a strategy for chemical-free formation of bioactive coatings: a real-time study

Nilebäck, L., Hedin, J., Widhe, M., Floderus, L., Krona, A., Bysell, H., Hedhammar, M.
(2017) BioMacromolecules, 18(3), pp. 846-854
https://doi.org/10.1021/acs.biomac.6b01721

A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices

Widhe, M., Shalaly, N.D., Hedhammar, M.
(2016) Biomaterials, 74, pp. 256-266
https://doi.org/10.1016/j.biomaterials.2015.10.013

Genetic fusion of single-chain variable fragments to partial spider silk improves target detection in micro- and nanoarrays

Thatikonda, N., Delfani, P., Jansson, R., Petersson, L., Lindberg, D., Wingren, C., Hedhammar, M.
(2016) Biotechnology Journal, 11 (3), pp. 437-448
https://doi.org/10.1002/biot.201500297

Silk matrices promote formation of insulin-secreting islet-like clusters

Shalaly, N.D., Ria, M., Johansson, U., Åvall, K., Berggren, P.-O., Hedhammar, M.
(2016) Biomaterials, 90, pp. 50-61
https://doi.org/10.1016/j.biomaterials.2016.03.006

Efficient passage of human pluripotent stem cells on spider silk matrices under xeno-free conditions

Wu, S., Johansson, J., Hovatta, O., Rising, A.
(2016) Cellular and Molecular Life Sciences, 73 (7), pp. 1479-1488
https://doi.org/10.1007/s00018-015-2053-5

Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris

Jansson, R., Lau, C.H., Ishida, T., Ramström, M., Sandgren, M., Hedhammar, M.
(2016) Biotechnology Journal, 11 (5), pp. 687-699
https://doi.org/10.1002/biot.201500412

Rational Design of Spider Silk Materials Genetically Fused with an Enzyme

Jansson, R., Courtin, C.M., Sandgren, M., Hedhammar, M.
(2015) Advanced Functional Materials, 25  (33), pp. 5343-5352
https://doi.org/10.1002/adfm.201501833

Pancreatic islet survival and engraftment is promoted by culture on functionalized spider silk matrices

Johansson, U., Ria, M., Åvall, K., Shalaly, N.D., Zaitsev, S.V., Berggren, P.-O., Hedhammar, M.
(2015) PLoS ONE, 10 (6)
https://doi.org/10.1371/journal.pone.0130169

Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells

Wu, S., Johansson, J., Damdimopoulou, P., Shahsavani, M., Falk, A., Hovatta, O., Rising, A.
(2014)Biomaterials, 35 (30), pp. 8496-8502
https://doi.org/10.1016/j.biomaterials.2014.06.039

Recombinant spider silk genetically functionalized with affinity domains

Jansson, R., Thatikonda, N., Lindberg, D., Rising, A., Johansson, J., Nygren, P.-A., Hedhammar, M.
(2014) Biomacromolecules, 15 (5), pp. 1696-1706
https://doi.org/10.1021/bm500114e

Recombinant spider silk with cell binding motifs for specific adherence of cells

Widhe, M., Johansson, U., Hillerdahl, C.-O., Hedhammar, M.
(2013) Biomaterials, 34 (33), pp. 8223-8234
https://doi.org/10.1016/j.biomaterials.2013.07.058

Recombinant spider silk matrices for neural stem cell cultures

Lewicka, M., Hermanson, O., Rising, A.U.
(2012) Biomaterials, 33 (31), pp. 7712-7717
https://doi.org/10.1016/j.biomaterials.2012.07.021

pH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain

Jaudzems, K., Askarieh, G., Landreh, M., Nordling, K., Hedhammar, M., Jörnvall, H., Rising, A., Knight, S.D., Johansson, J.
(2012) Journal of Molecular Biology, 422 (4), pp. 477-487
https://doi.org/10.1016/j.jmb.2012.06.004

Current progress and limitations of spider silk for biomedical applications

Widhe, M., Johansson, J., Hedhammar, M., Rising, A
(2012) Biopolymers, 97 (6), pp. 468-478
https://doi.org/10.1002/bip.21715

Functionalisation of recombinant spider silk with conjugated polyelectrolytes

Müller, C., Jansson, R., Elfwing, A., Askarieh, G., Karlsson, R., Hamedi, M., Rising, A., Johansson, J., Inganäs, O., Hedhammar, M.
(2011) Journal of Materials Chemistry, 21 (9), pp. 2909-2915
https://doi.org/10.1039/c0jm03270k

Spider silk proteins: Recent advances in recombinant production, structure-function relationships and biomedical applications

Rising, A., Widhe, M., Johansson, J., Hedhammar, M.
(2011) Cellular and Molecular Life Sciences, 68 (2), pp. 169-184
https://doi.org/10.1007/s00018-010-0462-z

A pH-Dependent Dimer Lock in Spider Silk Protein

Landreh, M., Askarieh, G., Nordling, K., Hedhammar, M., Rising, A., Casals, C., Astorga-Wells, J., Alvelius, G., Knight, S.D., Johansson, J., Jörnvall, H., Bergman, T.
(2010) Journal of Molecular Biology, 404 (2), pp. 328-336
https://doi.org/10.1016/j.jmb.2010.09.054

Sterilized recombinant spider silk fibers of low pyrogenicity

Hedhammar, M.Y., Bramfeldt, H., Baris, T., Widhe, M., Askarieh, G., Nordling, K., Aulock, S.V., Johansson, J.
(2010) Biomacromolecules, 11 (4), pp. 953-959
https://doi.org/10.1021/bm9014039

Self-assembly of spider silk proteins is controlled by a pH-sensitive relay

Askarieh, G., Hedhammar, M., Nordling, K., Saenz, A., Casals, C., Rising, A., Johansson, J., Knight, S.D.
(2010) Nature, 465 (7295), pp. 236-238
https://doi.org/10.1038/nature08962

Recombinant spider silk as matrices for cell culture

Widhe, M., Bysell, H., Nystedt, S., Schenning, I., Malmsten, M., Johansson, J., Rising, A., Hedhammar, M.
(2010) Biomaterials, 31 (36), pp. 9575-9585
https://doi.org/10.1016/j.biomaterials.2010.08.061

Engineered disulfides improve mechanical properties of recombinant spider silk

Grip, S., Johansson, J., Hedhammar, M.
(2009) Protein science, 18 (5), pp. 1012-1022
https://doi.org/10.1002/pro.111

Tissue response to subcutaneously implanted recombinant spider silk: An in vivo study

Fredriksson, C., Hedhammar, M., Feinstein, R., Nordling, K., Kratz, G., Johansson, J., Huss, F., Rising, A.
(2009) Materials, 2 (4), pp. 1908-1922
https://doi.org/10.3390/ma2041908

Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: Implications for fiber formation

Hedhammar, M., Rising, A., Grip, S., Martinez, A.S., Nordling, K., Casals, C., Stark, M., Johansson, J.
(2008) Biochemistry, 47 (11), pp. 3407-3417
https://doi.org/10.1021/bi702432y

Major ampullate spidroins from Euprosthenops australis: Multiplicity at protein, mRNA and gene levels

Rising, A., Johansson, J., Larson, G., Bongcam-Rudloff, E., Engström, W., Hjälm, G.
(2007) Insect Molecular Biology, 16 (5), pp. 551-561
https://doi.org/10.1111/j.1365-2583.2007.00749.x

Macroscopic fibers self-assembled from recombinant miniature spider silk proteins

Stark, M., Grip, S., Rising, A., Hedhammar, M., Engström, W., Hjälm, G., Johansson, J.
(2007) Biomacromolecules, 8 (5), pp. 1695-1701
https://doi.org/10.1021/bm070049y

N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins

Rising, A., Hjälm, G., Engström, W., Johansson, J.
(2006) Biomacromolecules, 7 (11), pp. 3120-3124
https://doi.org/10.1021/bm060693x

Contact information

Contact us
Spiber Technologies AB
AlbaNova University Center
SE-106 91 Stockholm, SWEDEN

Useful links

Cookie policy

© Spiber Technologies — All Rights Reserved