Interfacial behavior of recombinant spider silk protein parts reveals cues on the silk assembly mechanism

Nilebäck, L., Arola, S., Kvick, M., Paananen, A., Linder, M. B., Hedhammar, M.
(2018) Langmuir, 34 (39), pp 11795–11805

Bioactivation of Spider Silk with Basic Fibroblast Growth Factor for in Vitro Cell Culture: A Step toward Creation of Artificial ECM

Thatikonda, N., Nilebäck, L., Kempe, A., Widhe, M., Hedhammar, M.
(2018) ACS Biomaterials Science and Engineering, 4 (9), pp 3384–3396

Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts

Chouhan, D., Thatikonda, N., Nilebäck, L., Widhe, M., Hedhammar, M., Mandal, B. B.
(2018) ACS Applied Materials & Interfaces, 10 (28), pp 23560–23572

Recombinant Spider Silk as Mediator for One‐Step, Chemical‐Free Surface Biofunctionalization

Horak, J., Jansson, R., Dev, A., Nilebäck, L., Behnam, K., Linnros, J., Hedhammar, M., Karlström, A. E.
(2018) Advanced Functional Materials, 1800206,

Recombinant spider silk functionalized with a motif from fibronectin mediates cell adhesion and growth on polymeric substrates by entrapping cells during self-assembly

Tasiopoulos, C. P., Widhe, M., Hedhammar, M.
(2018) ACS Applied Materials & Interfaces, 10 (17), pp 14531–14539

Silk-silk interactions between silkworm fibroin and recombinant spider silk fusion proteins enable construction of bioactive materials

Nilebäck, L., Chouhan, D., Jansson, R., Widhe, M., Mandal, B., Hedhammar, M.
(2017) ACS Applied Materials & Interfaces9 (37), pp 31634–31644

Efficient protein production inspired by how spiders make silk

Kronqvist, N., Sarr, M., Lindqvist, A., Nordling, K., Otikovs, M., Venturi, L., Pioselli, B., Purhonen, P., Landreh, M., Biverstål, H., Toleikis, Z., Sjöberg, L., Robinson, C.V., Pelizzi, N., Jörnvall, H., Hebert, H., Jaudzems, K., Curstedt, T., Rising, A., Johansson, J.
(2017) Nature communications 8:15504

Ultrastrong and Bioactive Nanostructured Bio-Based Composites

Mittal, N., Jansson, R., Widhe, M., Benselfelt, T., Håkansson, K.M.O., Lundell, F., Hedhammar, M., Söderberg, L.D.
(2017) ACS Nano, 11 (5), pp 5148–5159

Self-assembly of recombinant silk as a strategy for chemical-free formation of bioactive coatings: a real-time study

Nilebäck, L., Hedin, J., Widhe, M., Floderus, L., Krona, A., Bysell, H., Hedhammar, M.
(2017) BioMacromolecules, 18(3), pp. 846-854

Genetic fusion of single-chain variable fragments to partial spider silk improves target detection in micro- and nanoarrays

Thatikonda, N., Delfani, P., Jansson, R., Petersson, L., Lindberg, D., Wingren, C., Hedhammar, M.
(2016) Biotechnology Journal, 11 (3), pp. 437-448

Efficient passage of human pluripotent stem cells on spider silk matrices under xeno-free conditions

Wu, S., Johansson, J., Hovatta, O., Rising, A.
(2016) Cellular and Molecular Life Sciences, 73 (7), pp. 1479-1488

Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris

Jansson, R., Lau, C.H., Ishida, T., Ramström, M., Sandgren, M., Hedhammar, M.
(2016) Biotechnology Journal, 11 (5), pp. 687-699

Rational Design of Spider Silk Materials Genetically Fused with an Enzyme

Jansson, R., Courtin, C.M., Sandgren, M., Hedhammar, M.
(2015) Advanced Functional Materials, 25  (33), pp. 5343-5352

Pancreatic islet survival and engraftment is promoted by culture on functionalized spider silk matrices

Johansson, U., Ria, M., Åvall, K., Shalaly, N.D., Zaitsev, S.V., Berggren, P.-O., Hedhammar, M.
(2015) PLoS ONE, 10 (6)

Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells

Wu, S., Johansson, J., Damdimopoulou, P., Shahsavani, M., Falk, A., Hovatta, O., Rising, A.
(2014)Biomaterials, 35 (30), pp. 8496-8502

Recombinant spider silk genetically functionalized with affinity domains

Jansson, R., Thatikonda, N., Lindberg, D., Rising, A., Johansson, J., Nygren, P.-A., Hedhammar, M.
(2014) Biomacromolecules, 15 (5), pp. 1696-1706

pH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain

Jaudzems, K., Askarieh, G., Landreh, M., Nordling, K., Hedhammar, M., Jörnvall, H., Rising, A., Knight, S.D., Johansson, J.
(2012) Journal of Molecular Biology, 422 (4), pp. 477-487

Current progress and limitations of spider silk for biomedical applications

Widhe, M., Johansson, J., Hedhammar, M., Rising, A
(2012) Biopolymers, 97 (6), pp. 468-478

Functionalisation of recombinant spider silk with conjugated polyelectrolytes

Müller, C., Jansson, R., Elfwing, A., Askarieh, G., Karlsson, R., Hamedi, M., Rising, A., Johansson, J., Inganäs, O., Hedhammar, M.
(2011) Journal of Materials Chemistry, 21 (9), pp. 2909-2915

Spider silk proteins: Recent advances in recombinant production, structure-function relationships and biomedical applications

Rising, A., Widhe, M., Johansson, J., Hedhammar, M.
(2011) Cellular and Molecular Life Sciences, 68 (2), pp. 169-184

A pH-Dependent Dimer Lock in Spider Silk Protein

Landreh, M., Askarieh, G., Nordling, K., Hedhammar, M., Rising, A., Casals, C., Astorga-Wells, J., Alvelius, G., Knight, S.D., Johansson, J., Jörnvall, H., Bergman, T.
(2010) Journal of Molecular Biology, 404 (2), pp. 328-336

Sterilized recombinant spider silk fibers of low pyrogenicity

Hedhammar, M.Y., Bramfeldt, H., Baris, T., Widhe, M., Askarieh, G., Nordling, K., Aulock, S.V., Johansson, J.
(2010) Biomacromolecules, 11 (4), pp. 953-959

Self-assembly of spider silk proteins is controlled by a pH-sensitive relay

Askarieh, G., Hedhammar, M., Nordling, K., Saenz, A., Casals, C., Rising, A., Johansson, J., Knight, S.D.
(2010) Nature, 465 (7295), pp. 236-238

Recombinant spider silk as matrices for cell culture

Widhe, M., Bysell, H., Nystedt, S., Schenning, I., Malmsten, M., Johansson, J., Rising, A., Hedhammar, M.
(2010) Biomaterials, 31 (36), pp. 9575-9585

Engineered disulfides improve mechanical properties of recombinant spider silk

Grip, S., Johansson, J., Hedhammar, M.
(2009) Protein science, 18 (5), pp. 1012-1022

Tissue response to subcutaneously implanted recombinant spider silk: An in vivo study

Fredriksson, C., Hedhammar, M., Feinstein, R., Nordling, K., Kratz, G., Johansson, J., Huss, F., Rising, A.
(2009) Materials, 2 (4), pp. 1908-1922

Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: Implications for fiber formation

Hedhammar, M., Rising, A., Grip, S., Martinez, A.S., Nordling, K., Casals, C., Stark, M., Johansson, J.
(2008) Biochemistry, 47 (11), pp. 3407-3417

Major ampullate spidroins from Euprosthenops australis: Multiplicity at protein, mRNA and gene levels

Rising, A., Johansson, J., Larson, G., Bongcam-Rudloff, E., Engström, W., Hjälm, G.
(2007) Insect Molecular Biology, 16 (5), pp. 551-561

Macroscopic fibers self-assembled from recombinant miniature spider silk proteins

Stark, M., Grip, S., Rising, A., Hedhammar, M., Engström, W., Hjälm, G., Johansson, J.
(2007) Biomacromolecules, 8 (5), pp. 1695-1701

N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins

Rising, A., Hjälm, G., Engström, W., Johansson, J.
(2006) Biomacromolecules, 7 (11), pp. 3120-3124